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A Theoretical Assessment of the Future of Rice Yields in Thailand 

using ORYZA and Projected Climate Data 

 

1. Introduction 
 
Climate change represents a significant disruption, and potentially an outright threat, to the global 
agricultural sector. Rice production is likely to be one of the most severely affected crops in the 
context of climate change. Thailand is one of the world’s top producers and exporters of rice. 
 
Rice is cultivated on approximately 11 million hectares, representing roughly 40% of the total 
cropped area of Thailand. Rain-fed and irrigated ecosystems are the dominant rice production 
systems. Specifically, rain-fed lowland conditions prevail across a large proportion of the rice area 
planted with photoperiod-sensitive rice varieties, such as aromatic rice and glutinous rice. 
 
The objective of this study is to investigate the possible effects of climate change on rice yield 
potentials in Thailand by simulating rice growth using future climate data.  
 
 
2. Methodology 
 
The study uses the ORYZA model, an ecophysiological process-based paddy crop growth model 
capable of simulating rice yields as a response to weather variables, soil conditions, genotype 
information and agronomic management information (such as establishment date and method, 
water management and N fertilizer management) (Bouman, Tuong, Wopereis, Ten-Berge, & Laar, 
2001)  (Setiyono, et al., 2019). The model has been evaluated under potential, water-limited and 
nitrogen-limited conditions in Asian countries, including the Philippines, Indonesia and India. 
 
The study augments similar modelling exercises – which arrive at broadly similar conclusions – 
undertaken in the academic literature, using, for example, the CERES-rice model (Babel, 
Agarwal, Swain, & Herath, 2011), the SIMRIW model (Horie, 2019) and the ISI-MP model 
(Prodhan, et al., 2022). 
 
As with all such modelling studies, the results of the current study should be considered indicative 
rather than definitive. The agricultural yields presented are necessarily theoretical, as they relate 
to the future, under changed climatic conditions and under ideal cropping conditions (soil 
conditions, fertilizer application, water management, etc.) (Pasquel, et al., 2022). The 
proportionate (percentage) changes in yields are generally considered to be more revealing, and 
more robust, than the absolute yield predictions (Lischeid, Webber, Sommer, Nendel, & Ewert, 
2022).  
 
To generate yield results, simulations were performed using model inputs (variety files, soil 
information and crop management) derived from previous projects in the IRRI database. 
 
Three rice varieties were used in the yield simulations: IR72, MTR140 and MTR070PS. The three 
varieties were calibrated in a simplified manner given the absence of systematic experimental 
data for the specified geography. Under the calibration method, the phenological characteristics 
(leaf area index, plant height, biomass information, etc.) of the selected varieties are similar to 
common Thai cultivars. IR72, with a maturity duration of around 110-120 days, corresponds to 
the rice varieties mostly planted in the Central Plains region (e.g. OM1490, SPR1, PTT1 and 
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RD31). MTR070PS is a photoperiod-sensitive variety and is similar to varieties such as KDML105 
that are planted in the North and North-East regions, as well as in other rain-fed lowland 
conditions. MTR140 is a transitional variety, located between IR72 and the long-duration varieties 
that are commonly planted in Thailand.  
 
For this study, the simulated rice yields (potential and water-limited scenarios) were generated 
from modelled weather data (provided by Climate Analytics) commissioned for the GCF Thai Rice 
project, combined with further model inputs to quantify changes in rice yields in the near-term 
climate scenario (2025-2049).  
 
To establish a baseline, crop simulations were run for the period 2001-2020 using data from 
Global Circulation Models (GCMs), namely the GFDL-ESM2M, HadGEm2-ES, IPSL-CM5A-LR 
and MIROC5 GCMs. Weather variables used were solar radiation (SRAD), minimum temperature 
(TMIN), maximum temperature (TMAX), vapour pressure (VP), wind speed (WIND) and 
precipitation (PREC). For future climate, a near-term period covering 2025-2049 was chosen. 
Data from the four GCMs were extracted for the years 2025-2049. GCM data was provided by 
Climate Analytics; this data was then extracted and reformatted by IRRI. Vapour pressure is not 
available from GCMs, so it was derived from average temperature instead.  
 
Potential yield simulations were performed for dry and wet seasons with two time periods, the 
current (2001-2020) and near-term (2025-2049) scenarios. Dry season peaks in the months of 
December, January and April, depending on the region, while the wet season peaks in the months 
of May, August, and October, also depending on the region. Average yields by period were then 
compared to measure the effect of the changes in climate. 
 
Using the same variety files and weather information, water-limited (rain-fed) simulations were 
also processed for the wet season, primarily to develop a detailed understanding of simulated 
yields using actual farming practices in the North and North-East regions. 
 
 
3. Results 
 
3.1 Climate Data 
 
Current and Near-Term Future  
 
Among the variables in the climate data, temperature and precipitation tend to exert the greatest 

influence on simulation outcomes. This is reflected in the water-limited modelling scenario. In the 

yield potential scenario, water requirements are explicitly set to be met 100% of the time (precisely 

because the focus is on yield potential) – and, therefore, by design the role of precipitation is 

negligible. 

 

Based on the four models (as provided by Climate Analytics) used in this exercise, the difference 

between current and near-term temperature is about  1.8  and  3.3 % change for TMax and TMin 

respectively, but goes up to ~3.8% change in TMax in March and up to ~6.4% for TMin in 

December.  
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Figure 1a. Monthly maximum temperature, current (2001-2020) and near-term future 

(2025-2049), Thailand 
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Figure 1b. Percentage change in monthly maximum temperature from current (2001-2020) to 

near-term future (2025-2049), Thailand 
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Figure 2a. Monthly minimum temperature, current (2001-2020) and near-term future 

(2025-2049), Thailand 
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Figure 2b. Percentage change in monthly minimum temperature from current (2001-2020) to 

near-term future (2025-2049), Thailand 
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Comparison Between Modelled and Observed Data 

 

To assess the modelled data against actual observed conditions, 3 pixels from the gridded data 

were selected. For each of these pixels, the modelled data was compared with meteorological 

station data from the Thailand Meteorological Department (TMD).   

 

The pixels were chosen such that they cover 2 weather stations. The 3 pixels chosen are pixel 

numbers 342, 469 and 612, which are located in the Central, Northern and North-Eastern regions, 

respectively. Monthly averages were computed both from the modelled data and the station data 

from 2001 to 2020.  
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Figure 3. Comparison between observed and modelled minimum (below) and maximum (above) 

temperatures, 2001-2020 

 

The violin plots show the difference between the modelled and station data in terms of density 

and variability of the two temperature variables. The modelled data-points seem to have a wider 

spread than the observed counterparts. Upper quartiles also appear to be more probable than 

lower quartile temperatures in the modelled data, but this is not the case for the station data. The 

means (blue circles) seem stable across the 12 months for the modelled data, but in the observed 

data, fluctuations can be observed both in the TMIN and the TMAX. 
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Figure 4. Comparison of monthly density and variability between modelled and observed 

minimum (lower diagram) and maximum (upper diagram) temperatures, 2001-2020 
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3.2 Yield Simulation Results 
 
At the national level, the average potential yield during the current period (2001-2020) for the 
three simulated varieties ranges from 5.80 t/ha to 7.22 t/ha (dry season) and 6.04 t/ha to 7.38 t/ha 
(wet season). Average potential yield is consistently lower in the near-term (2025-2049) scenario, 
with 0.6 t/ha (dry season) and 0.4 t/ha (wet season) declines in yield. This is an expected result, 
as an increase in temperature is theoretically anticipated to adversely affect rice yield. 
 
Figure 5 shows the yield potential during the dry season for IR72 and MTR140. IR72 exhibits the 
higher percentage reduction in yield (from current to near-term): approximately 10% across 
regions. However, note that the Central Plains region seems to be more vulnerable to the effect 
of climate change, particularly the increase in temperature: potential yield is projected to be at 
least 20% lower in some locations. For MTR140, average yield is expected to decrease by 8% 
from the current to the near-term periods, from 6.1 t/ha to 5.79 t/ha. Most of the affected areas 
are concentrated in the North-East.  

 

 
Figure 5. Dry season (with planting peaks in December, January, and April) potential yield and 

percentage change, by rice varieties and period, Thailand 
 
As shown in Figure 6, the yield potential during the wet season for IR72 is currently around 7.3 
t/ha and it declines to ~6.8 t/ha in the near-term period. With MTR140, yield falls to 5.8 t/ha, a 0.3 
t/ha reduction from the current yield. MTR070PS, a long-duration rice variety that is similar to the 
KDLM105 variety and that is planted only during the wet season, records an average yield 
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potential of 6.80 t/ha (baseline) and 6.5 t/ha (near-term), equivalent to a 4.4% decline in yield 
(Figure 7).  

 

 
Figure 6. Wet season (with planting peaks in May, August and October) potential yield and 

percentage change for IR72 and MTR140 rice varieties, Thailand 
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Figure 7. Wet season (with planting peaks in May, August and October) potential yield for 

current (2001-2020) and near-term (2025-2049) periods and percentage change for MTR070PS 
rice variety, Thailand 

 
Figures 8a and 8b show the simulated yield using the water-limited (rain-fed) scenario in the North 
and North-East regions. The MTR140 and MTR070PS simulated yields during the current period 
are approximately the same, at 4.0 t/ha in both the North and North-East regions and with a slight 
reduction in the near-term period.  

 

 
Figure 8a. Wet season simulated yield (water-limited) for current (2001-2020) and near-term 

(2025-2049) periods and percentage change for MTR140 rice variety, Thailand 
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Figure 8b. Wet season simulated yield (water-limited) and percentage change for MTR070PS 

rice variety, Thailand 
 
Table 1 shows the current and near-term average potential and water-limited yields and 
percentage changes by region and rice variety. Across the Central, North-East and North regions 
during the wet season, percentage changes in potential yields are estimated as -6.0% to -7.3%, 
-3.1% to -5.4% and -0.8% to -5.7% for IR72, MTR140 and MTR070PS, respectively. The 
percentage change during the dry season is higher for both IR72 and MTR140, ranging from -
8.6% to -12.8%. The higher percentage change in the dry season can be attributed to the much 
higher temperatures during this period. 
 
The simulated yields of MTR140 and MTR070PS rice varieties under the water-limited scenario 
range from 3.8 t/ha to 4.0 t/ha during the current period and decline to 3.7 t/ha to 3.9 t/ha during 
the near-term period.     
 
Table 1. Average simulated potential and water-limited yield (in t/ha) in Central, North-East and 
North regions of Thailand 
 

Season Region Variety 
Current (2001-

2020) 
Near-Term 
(2025-2049) 

Percent 
Change (%) 

 Potential 

Wet  

Central IR72 7.68 7.22 -6.0 

Central MTR140 5.96 5.64 -5.4 

Central MTR070PS 7.08 6.77 -4.4 

North-East IR72 7.59 7.10 -6.5 

North-East MTR140 5.73 5.55 -3.1 

North-East MTR070PS 7.35 7.29 -0.8 

North IR72 7.86 7.29 -7.3 

North MTR140 6.33 6.03 -4.7 
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North MTR070PS 7.94 7.49 -5.7 

Dry  

Central IR72 6.72 5.86 -12.8 

Central MTR140 4.91 4.49 -8.6 

North-East IR72 6.95 6.26 -9.9 

North-East MTR140 5.28 4.78 -9.5 

North IR72 8.17 7.31 -10.5 

North MTR140 6.26 5.84 -6.7 

 Water-Limited 

Wet 

North-East MTR140 3.86 3.81 -1.3 

North-East MTR070PS 3.82 3.74 -2.3 

North MTR140 4.03 3.94 -2.3 

North MTR070PS 3.81 3.73 -2.1 

 
The graphs below (Figure 9a and 9b) show the average potential yield and percentage change at 
the regional level by rice variety and season. Figure 9c shows the water-limited average yield and 
percentage change in the North and North-East regions during the wet season.  
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Figure 9a. Rice potential yield at regional level, by rice variety and period (current is 2001-2020; 

near-term is 2025-2049), Thailand 
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Figure 9b. Regional percent change in potential yield, by rice variety and season, Thailand 

 
 

 
Figure 9c. Water-limited rice yield and percent change by rice variety and season, North and 

North-East, Thailand 
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